Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 141

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of dissolved oxygen concentration on dynamic strain aging and stress corrosion cracking of SUS304 stainless steel under high temperature pressurized water

Hirota, Noriaki; Nakano, Hiroko; Fujita, Yoshitaka; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Demura, Masahiko*; Kobayashi, Yoshinao*

The IV International Scientific Forum "Nuclear Science and Technologies"; AIP Conference Proceedings 3020, p.030007_1 - 030007_6, 2024/01

Dynamic strain aging (DSA) and intergranular stress corrosion cracking (intragranular SCC) occur in high temperature pressurized water simulating a boiling water reactor environment due to changes in dissolved oxygen (DO) content, respectively. In order to clearly understand the difference between these phenomena, the mechanism of their occurrence was summarized. As a result, it was found that DSA due to intragranular cracking occurred in SUS304 stainless steel at low DO $$<$$ 1 ppb, while DSA was suppressed at DO 100 to 8500 ppb due to the formation of oxide films on the surface. On the other hand, when DO was increased to 20000 ppb, the film was peeled from the matrix, O element diffused to the grain boundary of the matrix, resulting in intergranular SCC. These results are indicated that the optimum DO concentration must be adjusted to suppress crack initiation due to DSA and intergranular SCC.

Journal Articles

A Raman spectroscopy study of bicarbonate effects on UO$$_{2+x}$$

McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kimuro, Shingo; Ishidera, Takamitsu

Journal of Nuclear Science and Technology, 60(12), p.1586 - 1594, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Oxygen potential of neodymium-doped U$$_{0.817}$$Pu$$_{0.180}$$Am$$_{0.003}$$O$$_{2 pm x}$$ uranium-plutonium-americium mixed oxides at 1573, 1773, and 1873 K

Vauchy, R.; Sunaoshi, Takeo*; Hirooka, Shun; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 580, p.154416_1 - 154416_11, 2023/07

 Times Cited Count:4 Percentile:97.05(Materials Science, Multidisciplinary)

Journal Articles

Oxygen potential, oxygen diffusion, and defect equilibria in UO$$_{2 pm x}$$

Watanabe, Masashi; Kato, Masato

Frontiers in Nuclear Engineering (Internet), 1, p.1082324_1 - 1082324_9, 2023/01

Since the oxygen potential and the oxygen coefficient of UO$$_{2}$$ have a significant impact on fuel performance, many experimental data have been obtained. However, experimental data of the oxygen potential and the oxygen diffusion coefficient in the high temperature region above 1673 K are very limited. In the present study, we aimed to obtain these data and analyze them by defect chemistry. The oxygen potentials and the oxygen chemical diffusion coefficient of UO$$_{2}$$ were measured by the gas equilibrium method in the near stoichiometric region at temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was made together with literature data and analyzed by defect chemistry. The oxygen potential of UO$$_{2}$$ was determined as a function of O/U ratio and temperature, and an equation representing the relationship was derived. The oxygen chemical diffusion coefficient values obtained in this study were reasonably close to the literature values. The oxygen partial pressure dependence of the oxygen chemical diffusion coefficients was predicted from the evaluated results of the oxygen potential data, but no clear dependence was observed.

JAEA Reports

Spatial distribution of desaturation around the tunnel predicted by three-dimensional two-phase flow modeling of the degassing process of dissolved gases in groundwater

Miyakawa, Kazuya; Yamamoto, Hajime*

JAEA-Research 2022-003, 40 Pages, 2022/05

JAEA-Research-2022-003.pdf:6.08MB

The excavation of large-scale underground facilities, such as geological disposal of high-level radioactive waste, creates an excavation damaged zone (EDZ) with cracks around the tunnel. In the EDZ, oxygen invades the bedrock through unsaturated cracks and affects environmental conditions for nuclide migration. When a tunnel is excavated in a geological formation containing a high concentration of dissolved CH$$_{4}$$, such as the Neogene marine sediments, degassed CH$$_{4}$$ prevents oxygen intrusion. However, it may be promoted through gas-phase diffusion through desaturation. The purpose of this study is to illustrate the method of estimating the spatial distribution of desaturation associated with the construction and operation of underground facilities in a stratum that contains a large amount of dissolved CH$$_{4}$$. A sequential excavation analysis that reflected the actual process of 10-year excavation of the Horonobe Underground Research Laboratory (URL) was carried out along with gas-water two-phase flow analysis. The analysis results of the amount of groundwater and gas discharged from the URL were about 100 to 300 m$$^{3}$$ d$$^{-1}$$ and 250 to 350 m$$^{3}$$ d$$^{-1}$$, respectively, as of January 2017. These results showed values close to the observations (100 m$$^{3}$$ d$$^{-1}$$ and 300 m$$^{3}$$ d$$^{-1}$$, respectively). The analysis results of the saturation distribution were relatively high around the 250 m gallery and relatively low around the 350 m gallery, confirming that they are consistent with the in-situ observations. Although there were still technical issues of analysis regarding the conditions for groundwater drainage from the tunnel wall and the method of handling grout effects, the numerical calculation was generally appropriate. Although the results of the saturation distribution associated with the excavation were insufficient as the quantitative evaluation, they were almost correct from a qualitative point of view.

JAEA Reports

Calculation of appropriate oxygen concentration for corrosion inhibition of 9Cr-1Mo steel in molten lead bismuth eutectic

Komatsu, Atsushi

JAEA-Research 2021-019, 24 Pages, 2022/05

JAEA-Research-2021-019.pdf:1.53MB

In order to reduce the corrosion rate of materials in molten lead bismuth eutectic (LBE), it is important to adjust the oxygen concentration, and past reports show that the oxygen concentration is often adjusted to about 10$$^{-7}$$ to 10$$^{-5}$$wt%. However, it is not clearly stated what concentration is optimal, and there are some reports of severe corrosion even within this concentration range. In this study, a corrosion model considering diffusion in oxide and LBE was developed for 9Cr-1Mo steel, and the corrosion control method estimated from the corrosion model were investigated. We also tried to calculate the optimum oxygen concentration to prevent the flow blockage at the low temperature of loop environment while reducing the corrosion of 9Cr-1Mo steel in molten LBE. As a result, it was expected that the corrosion mode of 9Cr-1Mo steel in LBE could be classified into three types, dense film formation, precipitation film formation, and film dissolution, depending on the ratio of oxide film thickness to diffusion layer thickness, iron concentration in LBE, and temperature. In order to inhibit corrosion, it is important to adjust the oxygen concentration so that the conditions for dense film formation can be maintained. For this purpose, it was expected that a pre-oxidized film of more than 10$$^{-7}$$m should be applied before immersion in LBE. The oxygen concentration of about 10$$^{-7}$$ to 10$$^{-5}$$wt% is the appropriate oxygen concentration when the oxide film has grown to some extent, and a higher oxygen concentration was expected to be required when the film is thin.

Journal Articles

Recent studies on fuel properties and irradiation behaviors of Am/Np-bearing MOX

Hirooka, Shun; Yokoyama, Keisuke; Kato, Masato

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Property studies on Am/Np-bearing MOX were carried out and how the properties influences on the irradiation behaviors was discussed. Both Am and Np inclusions increase the oxygen potential of MOX. Inter-diffusion coefficients obtained by using diffusion couple technique indicate that the inter-diffusion coefficient is larger in the order of U-Am, U-Pu and U-Np. Also, the inter-diffusion coefficients were evaluated to be larger at the O/M = 2 than those of O/M $$<$$ 2 by several orders. The increase of oxygen potential with Am/Np leads to higher vapor pressure of UO$$_{3}$$ and the acceleration of the pore migration along temperature gradient during irradiation. The redistributions of actinide elements were also considered with the relationship of the pore migration and diffusion in solid state. Thus, the obtained inter-diffusion coefficients directly influence on the redistribution rate. The obtained properties were modelled and can be installed in a fuel irradiation simulation code.

Journal Articles

Electrochemical behavior of carbon steels under thickness-controlled solution layer

Momma, Yuichiro*; Sakairi, Masatoshi*; Ueno, Fumiyoshi; Otani, Kyohei

Zairyo To Kankyo, 71(4), p.121 - 125, 2022/04

The effect of solution layer thickness on the atmospheric corrosion of carbon steel was investigated using novel devices fabricated by a 3D printer. These novel devices allowed us to control the solution layer thickness precisely. Potentiodynamic polarization measurements were performed under thickness-controlled solution layer, and oxygen diffusion limiting current density ($$j_{rm lim}$$) and anodic current density ($$j_{rm anode}$$) were measured. As the solution layer become thinner, $$j_{rm lim}$$ increased and $$j_{rm anode}$$ decreased. This result indicates that corrosion accelerates when the solution layer becomes thinner. The diffusion coefficient of oxygen was calculated as 3.20$$times$$10$$^{-5}$$ cm$$^{2}$$ s$$^{-1}$$ from the relationship between $$j_{rm lim}$$ and solution layer thickness, and the critical diffusion thickness was estimated to be 0.87 mm.

JAEA Reports

A Numerical simulation study of the desaturation and oxygen infusion into the sedimentary rock around the tunnel in the Horonobe Underground Research Laboratory

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

JAEA-Data/Code 2021-002, 26 Pages, 2021/05

JAEA-Data-Code-2021-002.pdf:2.14MB
JAEA-Data-Code-2021-002-appendix(CD-ROM).zip:40.99MB

Investigations employing numerical simulation have been conducted to study the mechanisms of desaturation and oxygen infusion into sedimentary formations. By mimicking the conditions of the Horonobe underground research laboratory, numerical simulations aided geoscientific investigation of the effects of dissolved gas content and rock permeability on the desaturation (Miyakawa et al., 2019) and mechanisms of oxygen intrusion into the host rock (Miyakawa et al., 2021). These simulations calculated multi-phase flow, including flows of groundwater and exsolved gas, and conducted sensitivity analysis changing the dissolved gas content, rock permeability, and humidity at the gallery wall. Only the most important results from these simulations have been reported previously, because of publishers' space limitations. Hence, in order to provide basic data for understanding the mechanisms of desaturation and oxygen infusion into rock, all data for 27 output parameters (e.g., advective fluxes of heat, gas, and water, diffusive fluxes of water, CH$$_{4}$$, CO$$_{2}$$, O$$_{2}$$, and N$$_{2}$$, saturation degree, water pressure, and mass fraction of each component) over a modeling period of 100 years are presented here.

JAEA Reports

Estimation of oxygen consumption amount in LBE-cooled accelerator-driven system

Sugawara, Takanori; Komatsu, Atsushi

JAEA-Research 2020-016, 44 Pages, 2021/01

JAEA-Research-2020-016.pdf:2.94MB

It is required to control the oxygen concentration in lead-bismuth eutectic (LBE) to prevent the corrosion of structures in LBE-cooled nuclear system. This study estimated the oxygen consumption amount in the LBE-cooled accelerator-driven system (ADS). We used the evaluation formula for the oxide layer thickness, which were derived by various experiments, to estimate the oxygen consumption amount. It was found that the maximum oxide layer thicknesses for the fuel assembly and the beam window were about 35 [$$mu$$m] and 20 [$$mu$$m], respectively. Based on these results, the oxygen consumption amount for the ADS plant was estimated as 30 [kg] during one cycle (one year). Through this study, it was indicated that an oxygen supply device which could supply 3-4 [g/h] oxygen in the normal operation, 150 [g/h] in the peak and about 30 [kg] during one cycle was necessary.

Journal Articles

Numerical simulation of oxygen infusion into desaturation resulting from artificial openings in sedimentary formations

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.609 - 614, 2021/01

Desaturation is expected due to excavation of an underground repository, especially in the newly created fractures zone (EDZ). During the construction and operation of facilities, the air in the gallery infuses into the rock around the gallery though the excavation affected area and causes oxidation of host rock and groundwater, which increase nuclide mobilities. In the Horonobe underground research laboratory (HURL), which is excavated in the Neogene sedimentary formations, no pyrite dissolution or precipitation of calcium sulfates was found from the cores drilled in the rock around the gallery. The reason for no oxidation is estimated that the release of dissolved gases from groundwater due to pressure decrease flows against the air infusion. In this research, the mechanism of O$$_{2}$$ intrusion into the rock was investigated by numerical multiphase flow simulation considering advection and diffusion of groundwater and gases. In the simulation, only Darcy's and Henry's laws were considered, that is, chemical reaction related to oxidation was not handled. The effects of dissolved gas and rock permeability on O$$_{2}$$ infusion into the rock were almost identical. Decreasing humidity with relatively low permeability leads to extensive accumulation of O$$_{2}$$ into the EDZ even though with a relatively large amount of dissolved gas. In the HURL, the shotcrete attenuates O$$_{2}$$ concentration and keeps 100% humidity at the boundary of the gallery wall, which inhibits O$$_{2}$$ infusion. Without the shotcrete, humidity at the gallery wall decreases according to seasonal changes and ventilation, which promotes O$$_{2}$$ intrusion into the EDZ but the chemical reaction related to O$$_{2}$$ buffering such as pyrite oxidation consumes O$$_{2}$$.

Journal Articles

Oxygen potential measurement of (U,Pu,Am)O$$_{2 pm x}$$ and (U,Pu,Am,Np)O$$_{2 pm x}$$

Hirooka, Shun; Matsumoto, Taku; Kato, Masato; Sunaoshi, Takeo*; Uno, Hiroki*; Yamada, Tadahisa*

Journal of Nuclear Materials, 542, p.152424_1 - 152424_9, 2020/12

 Times Cited Count:6 Percentile:59.94(Materials Science, Multidisciplinary)

The measurement of oxygen potential was conducted at 1,673, 1,773, and 1,873 K for (U$$_{0.623}$$Pu$$_{0.350}$$Am$$_{0.027}$$)O$$_{2}$$ and at 1,873 and 1,923 K for (U$$_{0.553}$$Pu$$_{0.285}$$Am$$_{0.015}$$Np$$_{0.147}$$)O$$_{2}$$ by using a thermo-gravimeter and an oxygen sensor. Am inclusion in terms of substituting the U significantly increased the oxygen potential. Similarly, the inclusion of Np as a substitute for U increased the oxygen potential; however, the effect was not as large as that with the Pu or Am addition at the same rate. The results were analyzed via defect chemistry and certain defect formations were suggested in the reducing region and the near-stoichiometric region by plotting the relationship between PO$$_{2}$$ and the deviation from the stoichiometry. The equilibrium constants of the defect reactions were arranged to reproduce the experiment such that Am/Np contents were included in the entropy with coefficients fitting the experimental data.

Journal Articles

Thermal and mechanical properties of CeO$$_{2}$$

Suzuki, Kiichi; Kato, Masato; Sunaoshi, Takeo*; Uno, Hiroki*; Carvajal-Nunez, U.*; Nelson, A. T.*; McClellan, K. J.*

Journal of the American Ceramic Society, 102(4), p.1994 - 2008, 2019/04

 Times Cited Count:36 Percentile:90.55(Materials Science, Ceramics)

The fundamental properties of CeO$$_{2}$$ were assessed using a range of experimental techniques. The oxygen potential of CeO$$_{2}$$ was measured by the thermogravimetric technique, and a numerical fit for the oxygen potential of CeO$$_{2}$$ is derived based on defect chemistry. Mechanical properties of CeO$$_{2}$$ were obtained using sound velocity measurement, resonant ultrasound spectroscopy and nanoindentation. The obtained mechanical properties of CeO$$_{2}$$ are then used to evaluate the Debye temperature and Gruneisen constant. The heat capacity and thermal conductivity of CeO$$_{2}$$ were also calculated using the Debye temperature and the Gruneisen constant. Finally, the thermal conductivity was calculated based upon laser flash analysis measurements. This result demonstrates that the thermal conductivity has strong dependence upon material purity.

Journal Articles

Effects of environmental factors inside the crevice on corrosion of stainless steel in high temperature water

Yamamoto, Masahiro; Sato, Tomonori; Igarashi, Takahiro; Ueno, Fumiyoshi; Soma, Yasutaka

Proceedings of European Corrosion Congress 2017 (EUROCORR 2017) and 20th ICC & Process Safety Congress 2017 (USB Flash Drive), 6 Pages, 2018/09

The authors have studied the differences between outer surface and the crevice-like portion of SUS316L in high pressurized and high temperature water containing dissolved oxygen. We have already introduced that changes in the characteristics of corrosion products along the crevice directions and gap width. It is suggested that the environmental conditions are different with the features of crevice from these results. In this report, we introduce the changes in oxide films with crevice gaps and comparison with the numerical simulation data utilizing of FEM calculation.

Journal Articles

Corrigendum to "Real time observation of oxygen chemisorption states on Si(001)-2$$times$$1 during supersonic oxygen molecular beam irradiation"

Teraoka, Yuden; Yoshigoe, Akitaka

Applied Surface Science, 346, P. 580, 2015/08

 Times Cited Count:0 Percentile:1.75(Chemistry, Physical)

Journal Articles

Corrigendum to "Si 2p and O 1s photoemission from oxidized Si(001) surfaces depending on translational kinetic energy of incident O$$_{2}$$ molecules"

Teraoka, Yuden; Yoshigoe, Akitaka

Applied Surface Science, 343, P. 212, 2015/07

 Times Cited Count:0 Percentile:1.75(Chemistry, Physical)

Journal Articles

Corrigendum to "Coexistence of passive and active oxidation for O$$_{2}$$/Si(001) system observed by SiO mass spectrometry and synchrotron radiation photoemission spectroscopy"

Teraoka, Yuden; Moritani, Kosuke*; Yoshigoe, Akitaka

Applied Surface Science, 343, P. 213, 2015/07

 Times Cited Count:0 Percentile:1.75(Chemistry, Physical)

Journal Articles

Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Hyomen Kagaku, 36(7), p.345 - 350, 2015/07

Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations.

Journal Articles

Study of corrosion rate of carbon steel in diluted artificial seawater under simulated irradiation condition

Komatsu, Atsushi; Tsukada, Takashi; Ueno, Fumiyoshi; Yamamoto, Masahiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 4 Pages, 2015/05

Effect of oxygen and hydrogen peroxide on corrosion rate of carbon steel in diluted artificial seawater was investigated by electrochemical methods. Diffusion coefficient and thickness of diffusion layer for oxygen and hydrogen peroxide were measured to estimate the diffusion limiting current density. Corrosion tests of carbon steel were also conducted in diluted artificial seawater containing oxygen and/or hydrogen peroxide at 323K. The diffusion coefficient of hydrogen peroxide was about 0.8 times lower than that of oxygen, and the thickness of diffusion layer was almost equivalent between oxygen and hydrogen peroxide. Diffusion limiting current density of hydrogen peroxide was estimated to be 0.4 times lower than that of oxygen in the same concentration at 323K. Plot of corrosion rate with the addition of concentration of oxygen and 0.4 times concentration of hydrogen peroxide showed good correlation.

141 (Records 1-20 displayed on this page)